Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-Propionylthiourea

Bohari M. Yamin and Eliyanti A. Othman*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Correspondence e-mail: eliyanti84@yahoo.com.my
Received 10 November 2007; accepted 18 November 2007
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.048 ; \omega R$ factor $=0.119$; data-to-parameter ratio $=17.7$.

The molecule of the title compound, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}$, is essentially planar; it adopts a trans configuration with respect to the position of the propionyl group relative to the thiono S atom about the $\mathrm{C}-\mathrm{N}$ bond. The molecular structure is stabilized by an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the propionyl O atom and the amide H atom. Molecules are linked into a two-dimensional network parallel to the (10 $\overline{1})$ plane by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular hydrogen bonds.

Related literature

For the crystal structures of thiourea analogues, see: Yusof et al. (2007); Rosli et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=132.19$
Monoclinic, $P 2_{1} / n$
$a=5.0790$ (15) \AA
$b=14.342(4) \AA$
$c=9.273$ (3) A
$\beta=102.744$ (6) ${ }^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.832, T_{\text {max }}=0.946$
3622 measured reflections 1291 independent reflections 910 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048 \quad 73$ parameters
$w R\left(F^{2}\right)=0.119 \quad \mathrm{H}$-atom parameters constrained
$S=1.02$
$\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3}$
1291 reflections

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{O} 1$	0.86	2.00	$2.658(3)$	133
N1-H1D O^{i}	0.86	2.11	$2.935(3)$	160
$\mathrm{~N} 2-\mathrm{H} 2 D \cdots \mathrm{~S}^{\text {ii }}$	0.86	2.57	$3.409(3)$	166

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x,-y,-z+1$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Ministry of Higher Education of Malaysia and Universiti Kebangsaan Malaysian for the research grant UKM-OUP-BTT-28/2007.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2516).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Rosli, M. M., Karthikeyan, M. S., Fun, H.-K., Razak, I. A., Patil, P. S., Holla, B. S. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o5692-o5693.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yusof, M. S. M., Yaakob, W. N. A., Kadir, M. A. \& Yamin, B. M. (2007). Acta Cryst. E63, o241-o243.

supplementary materials

Acta Cryst. (2008). E64, o313 [doi:10.1107/S160053680706031X]

N-Propionylthiourea

B. M. Yamin and E. A. Othman

Comment

Most carbonoylthiourea of the type, $R^{1} \mathrm{HNC}(\mathrm{S}) \mathrm{NH} R^{2}$, such as N-butanoyl-N'- (4-nitrophenyl)thiourea (Yusof et al., 2007) can be prepared from the reaction of carbonoylchloride with ammonium thiocyanate which give carbonoyl- isothiocyanate, an intermediate for the formation of thiourea moiety when reacted with the amine compounds. However, the title compound (Fig.1) was unexpectedly obtained when the mixture of propionyl chloride and ammonium thiocyanate was stirred for 30 minutes before adding the amine compound.

The molecule is essentially planar, with a maximum deviation of 0.021 (3) \AA for atom C 1 from the mean plane. The propionyl group, $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{O} 1$, is trans relative to the thiono $\mathrm{C} 4=\mathrm{S} 1$ group across the $\mathrm{C} 4-\mathrm{N} 1$ bond. The bond lengths and angles are in normal ranges (Allen et al., 1987). The molecular structure is stabilized by an intramolecular hydrogen bond, $\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O} 1$ (Table 1), which forms a $\mathrm{S}(6)$ ring. In the crystal structure, the molecules are linked by N1—H1D $\cdots \mathrm{O}^{\mathrm{i}}$ and $\mathrm{N} 2-\mathrm{H} 2 \mathrm{D} \cdots \mathrm{S} 1^{\text {ii }}$ intermolecular hydrogen bonds, forming a two-dimensional network (Fig. 2) parallel to the (1 $0 \overline{1}$) plane.

Experimental

A solution of ammonium thiocyanate ($0.05 \mathrm{~mol}, 3.80 \mathrm{~g}$) in acetone (30 ml) was added dropwise to a solution of propionyl chloride $(0.05 \mathrm{~mol}, 4.63 \mathrm{~g})$ in acetone $(20 \mathrm{ml})$. The mixture was stirred for 30 min and the resulting light yellow solution was filtered. Single crystals of the title compound were obtained by slow evaporation of the solution (yield 90\%; m.p. 420.2-421.0 K).

Refinement

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA)$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2-1.5($ methyl $) U_{\text {eq }}$ (parent atom).

Figures

supplementary materials

Fig. 2. The molecular packing of the title compound, viewed approximately down the c axis. Hydrogen bonds are shown as dashed lines.

N-Propionylthiourea

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=132.19$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=5.0790(15) \AA$
$b=14.342$ (4) \AA
$c=9.273$ (3) \AA
$\beta=102.744(6)^{\circ}$
$V=658.8(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F_{000}=280 \\
& D_{\mathrm{x}}=1.333 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} \mathrm{~K} \mathrm{\alpha} \mathrm{radiation} \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1291 \text { reflections } \\
& \theta=2.6-26.0^{\circ} \\
& \mu=0.40 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.48 \times 0.19 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 83.66 pixels mm^{-1}
$T=298(2) \mathrm{K}$
ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.832, T_{\text {max }}=0.946$
1291 independent reflections
910 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=2.6^{\circ}$
$h=-6 \rightarrow 5$
$k=-16 \rightarrow 17$
$l=-9 \rightarrow 11$
3622 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.119$
$S=1.02$
1291 reflections
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0492 P)^{2}+0.293 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.23$ e \AA^{-3}

73 parameters

$\Delta \rho_{\text {min }}=-0.16$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	$0.01989(18)$	$0.06361(6)$	$0.28118(8)$	$0.0646(3)$
O1	$0.7005(4)$	$0.22101(13)$	$0.58191(18)$	$0.0537(5)$
N1	$0.4084(4)$	$0.18551(14)$	$0.3657(2)$	$0.0428(6)$
H1D	0.3630	0.2009	0.2739	0.051^{*}
C4	$0.2638(5)$	$0.11286(17)$	$0.4084(3)$	$0.0413(6)$
N2	$0.3300(5)$	$0.08712(15)$	$0.5470(2)$	$0.0514(6)$
H2C	0.4587	0.1151	0.6072	0.062^{*}
H2D	0.2448	0.0422	0.5779	0.062^{*}
C3	$0.6154(5)$	$0.23647(18)$	$0.4506(3)$	$0.0431(6)$
C2	$0.7271(7)$	$0.3102(2)$	$0.3675(3)$	$0.0635(9)$
H2A	0.7959	0.2807	0.2892	0.076^{*}
H2B	0.5808	0.3512	0.3212	0.076^{*}
C1	$0.9454(7)$	$0.3677(2)$	$0.4578(3)$	$0.0706(9)$
H1A	1.0051	0.4130	0.3958	0.106^{*}
H1B	1.0940	0.3282	0.5022	0.106^{*}
H1C	0.8785	0.3990	0.5340	0.106^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0696(6)$	$0.0701(6)$	$0.0465(5)$	$-0.0255(4)$	$-0.0038(4)$	$0.0050(4)$
O1	$0.0653(13)$	$0.0566(12)$	$0.0324(10)$	$-0.0098(10)$	$-0.0040(8)$	$0.0002(8)$
N1	$0.0498(14)$	$0.0479(13)$	$0.0273(10)$	$-0.0060(11)$	$0.0013(9)$	$0.0028(9)$
C4	$0.0445(15)$	$0.0408(15)$	$0.0385(14)$	$0.0040(12)$	$0.0089(11)$	$-0.0008(11)$
N2	$0.0633(16)$	$0.0523(14)$	$0.0357(12)$	$-0.0122(12)$	$0.0045(10)$	$0.0034(10)$
C3	$0.0473(17)$	$0.0420(15)$	$0.0373(14)$	$0.0028(12)$	$0.0032(11)$	$-0.0015(11)$
C2	$0.073(2)$	$0.063(2)$	$0.0484(17)$	$-0.0223(17)$	$-0.0002(15)$	$0.0073(14)$
C1	$0.076(2)$	$0.069(2)$	$0.064(2)$	$-0.0238(18)$	$0.0095(17)$	$-0.0026(16)$

supplementary materials

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

S1-C4	1.668 (3)	C3-C2	1.492 (4)
O1-C3	1.219 (3)	C2-C1	1.483 (4)
N1-C3	1.377 (3)	C2-H2A	0.97
N1-C4	1.382 (3)	C2-H2B	0.97
N1-H1D	0.86	C1-H1A	0.96
$\mathrm{C} 4-\mathrm{N} 2$	1.308 (3)	C1-H1B	0.96
N2-H2C	0.86	C1-H1C	0.96
N2-H2D	0.86		
C3-N1-C4	128.6 (2)	C1-C2-C3	115.1 (2)
C3-N1-H1D	115.7	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5
C4-N1-H1D	115.7	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5
N2-C4-N1	117.2 (2)	C1-C2-H2B	108.5
N2-C4-S1	124.4 (2)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.5
N1-C4-S1	118.37 (18)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.5
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{C}$	120.0	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{D}$	120.0	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{C}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{D}$	120.0	H1A-C1-H1B	109.5
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1$	122.2 (2)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
O1-C3-C2	123.6 (2)	H1A-C1-H1C	109.5
N1-C3-C2	114.2 (2)	H1B-C1-H1C	109.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2$	-0.7 (4)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	179.8 (3)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{S} 1$	179.7 (2)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	-2.5 (5)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 1$	0.7 (4)	N1-C3-C2-C1	178.4 (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{C} \cdots \mathrm{O} 1$	0.86	2.00	$2.658(3)$	133
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{D} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.11	$2.935(3)$	160
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{D} \cdots \mathrm{S}^{\mathrm{ii}}$	0.86	2.57	$3.409(3)$	166

Symmetry codes: (i) $x-1 / 2,-y+1 / 2, z-1 / 2$; (ii) $-x,-y,-z+1$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

